20 research outputs found

    Monadic second order finite satisfiability and unbounded tree-width

    Get PDF
    The finite satisfiability problem of monadic second order logic is decidable only on classes of structures of bounded tree-width by the classic result of Seese (1991). We prove the following problem is decidable: Input: (i) A monadic second order logic sentence α\alpha, and (ii) a sentence β\beta in the two-variable fragment of first order logic extended with counting quantifiers. The vocabularies of α\alpha and β\beta may intersect. Output: Is there a finite structure which satisfies α∧β\alpha\land\beta such that the restriction of the structure to the vocabulary of α\alpha has bounded tree-width? (The tree-width of the desired structure is not bounded.) As a consequence, we prove the decidability of the satisfiability problem by a finite structure of bounded tree-width of a logic extending monadic second order logic with linear cardinality constraints of the form ∣X1∣+⋯+∣Xr∣<∣Y1∣+⋯+∣Ys∣|X_{1}|+\cdots+|X_{r}|<|Y_{1}|+\cdots+|Y_{s}|, where the XiX_{i} and YjY_{j} are monadic second order variables. We prove the decidability of a similar extension of WS1S

    Connection Matrices and the Definability of Graph Parameters

    Get PDF
    In this paper we extend the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with modular counting CMSOL of B. Godlin, T. Kotek and J.A. Makowsky (2008 and 2009), and demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers

    Parameterized Systems in BIP: Design and Model Checking

    Get PDF
    BIP is a component-based framework for system design that has important industrial applications. BIP is built on three pillars: behavior, interaction, and priority. In this paper, we introduce first-order interaction logic (FOIL) that extends BIP to systems parameterized in the number of components. We show that FOIL captures classical parameterized architectures such as token-passing rings, cliques of identical components communicating with rendezvous or broadcast, and client-server systems. Although the BIP framework includes efficient verification tools for statically-defined systems, none are available for parameterized systems with an unbounded number of components. The parameterized model checking literature contains a wealth of techniques for systems of classical architectures. However, application of these results requires a deep understanding of parameterized model checking techniques and their underlying mathematical models. To overcome these difficulties, we introduce a framework that automatically identifies parameterized model checking techniques applicable to a BIP design. To our knowledge, it is the first framework that allows one to apply prominent parameterized model checking results in a systematic way
    corecore